

Labs21 Advanced Course Series

Advanced Exhaust Dispersion Design

Ron Petersen, Ph.D., P.E. CPP

Goal: Develop an advanced exhaust dispersion design

Objectives: At the end of the session, you will be able to:

- Implement a balanced design process that considers safety, energy efficiency, aesthetics and other parameters
- Distinguish between standard, good and better practice to analyze and address safety of exhaust dispersion
- Implement energy efficiency features in exhaust dispersion

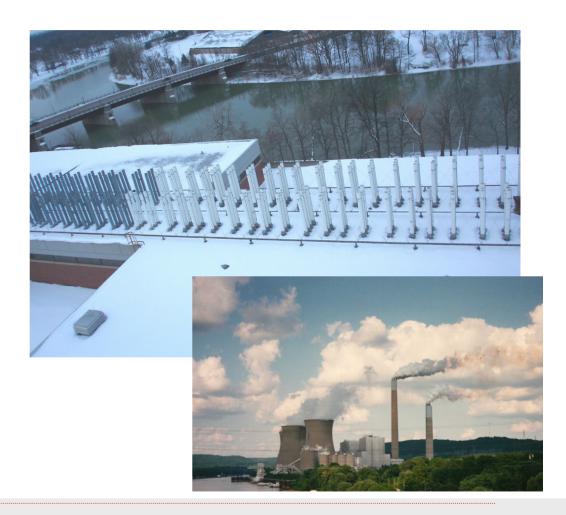
Outline

- Introduction
- Process Description
- Standard Practice
- Good Practice
- Better Practice
- Performance Comparison
- Conclusion

Introduction

• Why is this important?

- Beyond worker safety
- Identify energy efficiency opportunities


What is exhaust dispersion design?

- Air flow around the building: Spot potential air quality problems
- Design practice: Know what methods are available
- Recommended approach: Develop design skills

Stack Design Challenges

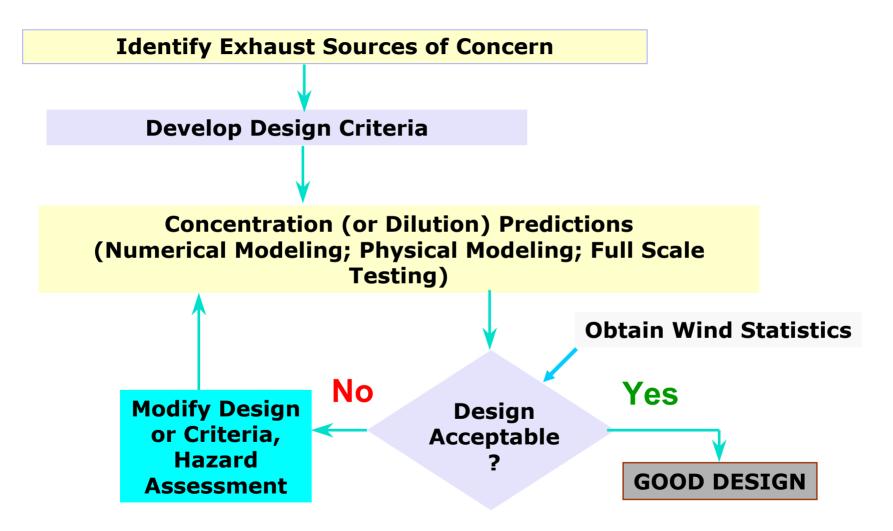
- Aesthetics
- Equipment cost
- Noise and vibration
- Structural loads
- Energy costs
- Dispersion modeling

Process Description

Programming

1. Review Design Intent Document

Schematic Design


- 2. Determine Level of Design Support
- 3. Identify Sources of Concern
- 4. Develop Concentration Design Criteria
- 5. Predict Concentrations: Apply Design Practice

Design Development

- 6. Develop System Design: Apply Design Practice
- 7. Finalize Exhaust Dispersion System Design

Recommended Approach

Identify Sources of Concern

Boiler


Radioisotope

Cooling Tower

Animal Room

Traffic

Emergency Generator

Diesel Vehicles

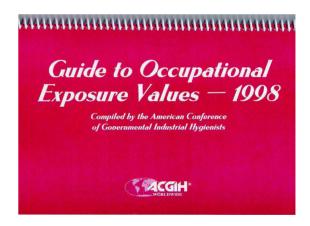
Develop Concentration Design Criteria

Obtain Hazard Information:

Concentration per unit volume and a mass flow rate for each substance

Apply evaluation method

- Dilution
 - Easy to visualize
 - Must account for exhaust device's changing internal volume flow
- Mass emission (normalized concentration)
 - Use mass emission rate (g/s) and health limit in $\mu g/m^3$ to normalize exposure


• Determine (C/m)_{health/odor} or Dilution (C/C_o)_{health/odor} thresholds

- C health & C odor (concentration per unit volume) for each substance
- Maximum **m** (mass flow rate) or exhaust concentration (C_o) for each substance

Use Concentration Guidelines

- Health Limit concentrations (C health)
 - Lowest of ACGIH, OSHA and NIOSH
 - STELs (15 Minute Averaging Time)
 - 8 hr TWA (time weighted average) multiplied by 3
 - Safety Factor
 - 5 for routine and 1 for accidents
 (ANSI/AIHA Z9.5 2003)
- Odor Thresholds (C_{odor})
 - ACGIH; various research

Predict Concentrations: Apply Design Practice

Standard Design Practice

Use Prescriptive Design Guidelines

Good Design Practice

- ASHRAE and EPA Calculation and Graphical Methods
- Plume Dispersion calculations

Better Design Practice

- Computational Fluid Dynamics
- Wind Tunnel Modeling

Standard Design Practice

Safety Considerations

- Apply International Mechanical Code (IMC) or Uniform Mechanical Code (UMC)
- Use EPA, ASHRAE prescriptive guidelines for stack exit velocity and location.

Energy efficiency features

None

Design Codes: Requirements

IMC & UMC

- Exhaust system shall discharge at a point where it will not cause a nuisance and from which it cannot be readily drawn in by a ventilating system
- Exhaust ducts discharging other product (heat, odors, smoke, etc.) shall terminate:
 - 1) 10 ft from the property line;
 - 2) 3 from from exterior walls and roofs;
 - 3) 10 ft from openings into the building; 10 ft above adjoining grade.
- Exhaust ducts discharging explosive or flammable vapors shall terminate:
 - 1) 30 ft from the property line;
 - 2) 10 ft from openings into the building;
 - 3) 30 ft from combustible walls and openings in the building;
 - 4) 10 ft above adjoining grade.

Prescriptive Design Guidelines: Design Strategies

- from ASHRAE HVAC Applications, Chapter 44, 2003
- Includes exhaust stack velocity guidelines
- Suggests increasing stack height or separation distance
- Recommends locating on tallest building feature
- Requires vertically directed stack with no caps
- Provides other stack design standards

Prescriptive Design Guidelines: Stack Velocity

Maintain exit velocity V_e above:

- 10 m/s unless droplets in exhaust stream; then use 5 m/s.
 (ASHRAE 2003, Chapter 44)
- 15.2 m/s unless lower velocity demonstrated adequate. (ANSI/AIHA Z9.5 – 2003)
- 1.5 times the 1 % wind speed at stack top (ASHRAE 2003, Chapter 44).

Prescriptive Design Guidelines: Stack Height

- ANSI/AIHA Standard Z9.5 10 ft above adjacent roof line
- Standard NFPA 45 minimum 10 ft height to protect rooftop workers
- NFPA 92A exhaust stack discharge location should be away from building outside air intakes to minimize recirculation
- EPA GEP stack height (2.5 times the building height)

Prescriptive Stack Design Summary

- Reduce source emissions
- Determine stack height
- Provide adequate exit velocity
- Maximize plume height
- Locate on similar building heights
- Position intakes low, but avoid street level

Good Design Practice

Safety considerations

- Stack design strategies
- Analytical dispersion methods
- Graphical dispersion methods

Energy efficiency features

- Stepped CV fan operation
- Consider VAV air exhaust devices

Stack Design Strategies

- Central exhausts with combined flows
- Ganged stacks
- Reduce contamination with filters, collectors and scrubbers
- Entrained air stacks

Analytical Dispersion Methods

- Based on plume dispersion estimations.
- Applicable for simple buildings with no taller surrounding buildings/features with air intakes on the building roof.
- Experienced professional can develop conservative exhaust designs.
- Method may not be conservative if used by inexperienced practitioner.
- Concentration estimates on building sidewalls highly inaccurate.

EPA and **ASHRAE** Plume Dispersion

- Gaussian Diffusion Equation
- Plume Rise calculation
- Horizontal Dispersion Coefficients
- Vertical Dispersion Coefficients
- Wind Speed considerations

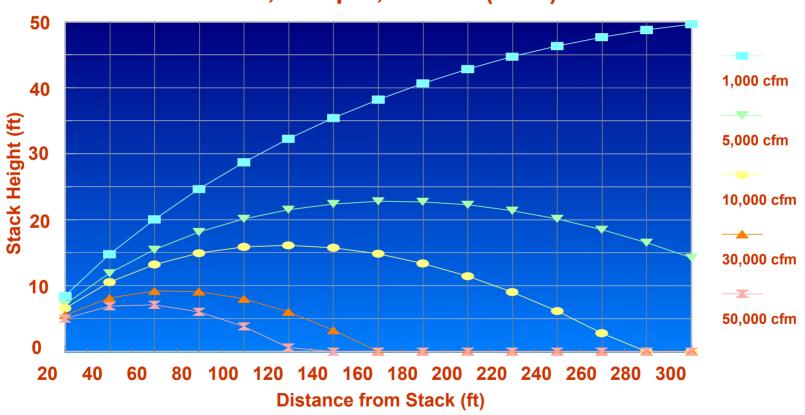
EPA Dispersion Equation

$$\frac{C}{m} = \frac{1}{\{\pi \sigma_y \sigma_z U_s\}} \exp\left[-\frac{h^2}{2\sigma_z^2}\right] \times 10^6$$

ASHRAE Plume Dispersion (at roof level)

$$D_r = 4 \frac{U_H}{V_e} \frac{\sigma_y}{d_e} \frac{\sigma_z}{d_e} \exp\left(\frac{h^2}{2\sigma_z^2}\right)$$

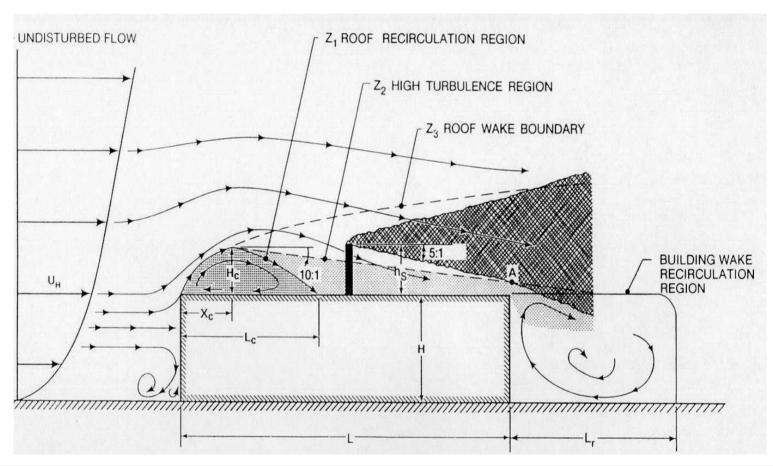
$$\frac{h^2}{2\sigma_z^2} < 5.0$$


$$(i.e., h < 3.16\sigma_z)$$

Initial Stack Height Design Chart

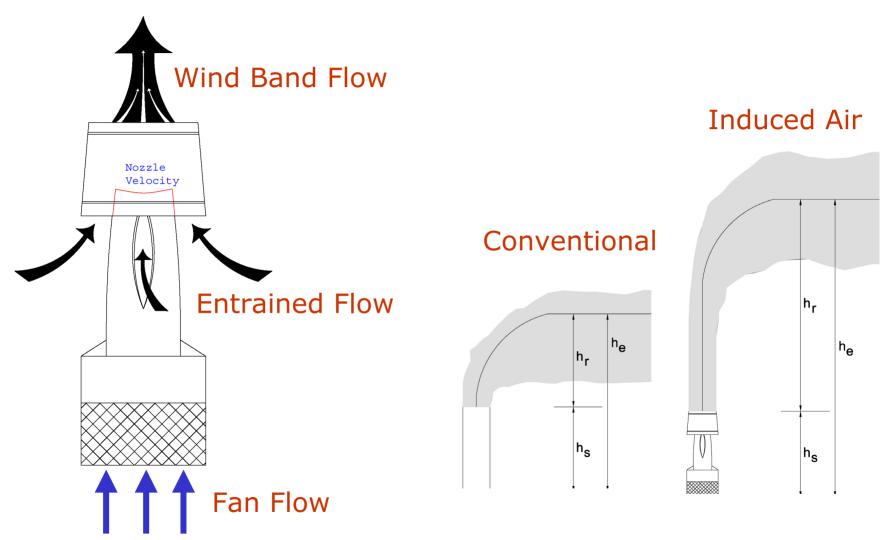
ASHRAE Criterion -- 400 ug/m3 per g/s

Ve = 3,000 fpm; Y = 6.7 (hs/S)2

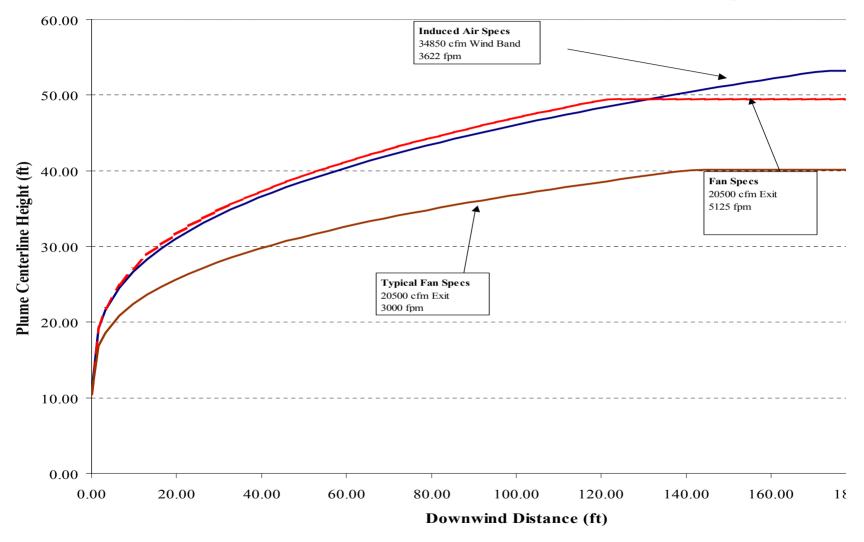

Graphical Dispersion Method

- Method should prevent fume reentry into emitting building most of time.
- Not recommended when taller buildings or terrain are nearby or when exhaust contains toxic gases.
- Concentration calculations recommended if excessively tall stacks are estimated or if exhaust contains toxic gases.

Graphical Method...


- Step 1 estimate height and location of flow recirculations
- Step 2 estimate required height for capped stack
- Step 3 reduce required height based on plume rise.

ASHRAE Graphical Method



Induced Air Fans: verify plume rise

Conventional vs. Entrained Air - 20 mph

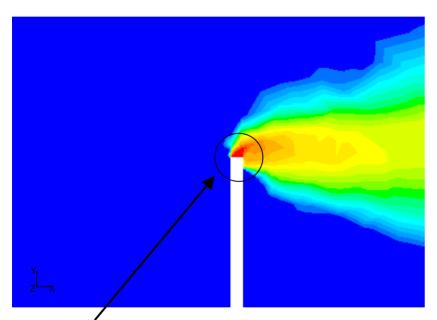
Better Design Practice

Safety considerations

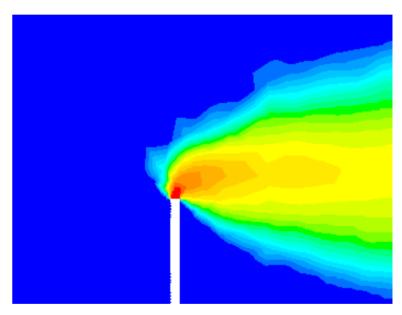
- Computational Fluid
 Dynamics (CFD) review
- Wind-tunnel (WT) modeling

Energy efficiency features

- Variable Air Volume (VAV) system
- Real-time wind monitoring



CFD and Wind Tunnel Comparison


- Have basic equations of motion been solved?
 - CFD: yes, but turbulence closure is approximate
 - WT: yes, turbulence is accurately modeled
- Have field (empirical) databases been validated?
 - CFD: ?
 - WT: yes; used to validate CFD and analytical techniques
- Have atmospheric dispersion comparisons been demonstrated?
 - CFD: ? , but EPA is working on these comparisons
 - WT: yes
- Is there a standard method of application?
 - CFD: no. EPA is working on this
 - WT: yes. EPA has guidelines
- Are conservative estimates provided?
 - CFD: ?
 - WT: yes

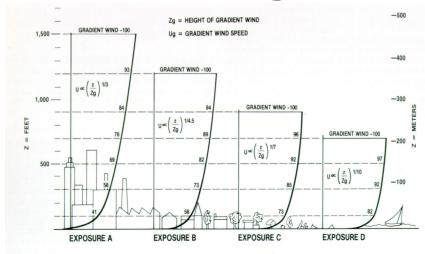
CFD Plume Rise Simulation

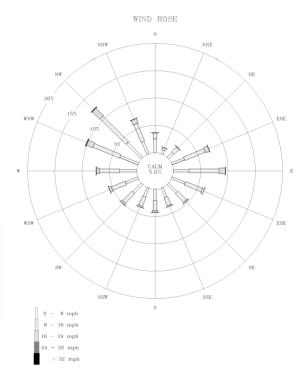
Velocity ratio 0.5, Flagging is evident to right of stack

Velocity ratio 2.3, no flagging

Computational Fluid Dynamics (CFD): External Flow Summary

- Future state of the art
- Turbulence closure a problem
- No standard user methods
- Not yet suitable in complex outdoor environment


Wind Tunnel Modeling: Overview


- Match Velocity Ratio
- Match Density Ratio
- Scale all dimensions by common factor
- Use with high Reynolds Numbers
- Apply wind velocity and turbulence profiles
- Simulate exhaust airflow temperature and buoyancy

Wind Tunnel Modeling: Process Steps

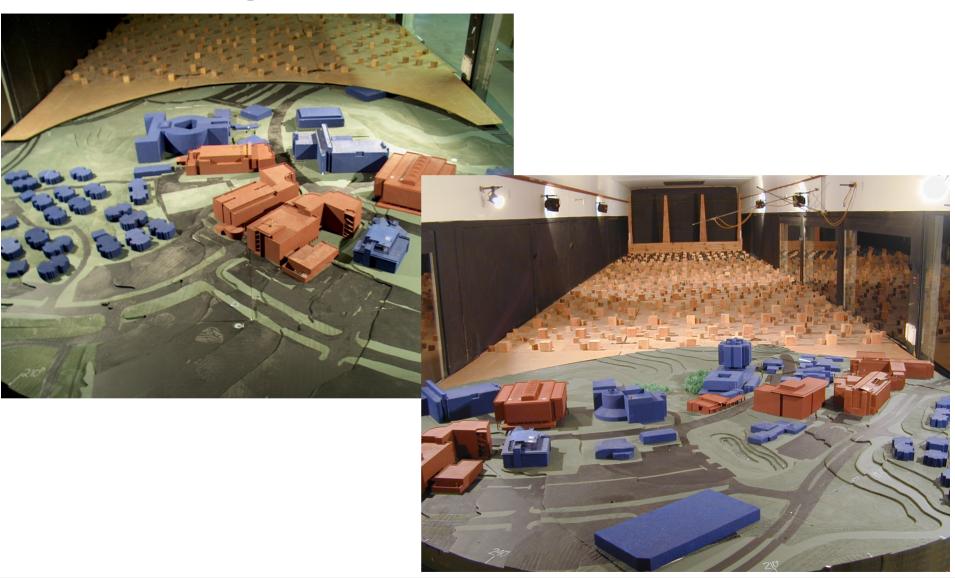
- Specify model operating conditions
- Construct scale model
- Setup and visualize dispersion
- Measure concentrations
- Compare results with design criteria

Typical Source Parameter Table...

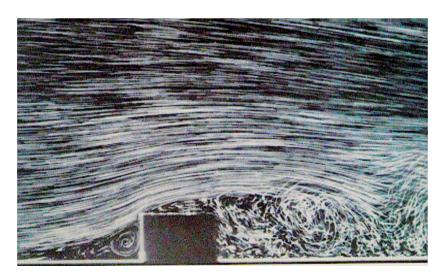
Source Description	Stack ID	Initial Stack Height Above Grade (ft)	Exit Diameter (in)	Exit Temperature (°F)	Volume Flow Rate (cfm)	Exit Velocity (fpm)
1 Fume Hood Exhaust 2 Kitchen Exhaust 3 Loading Dock 4 500 KW Diesel Generator 5 Cremator Exhaust 6 Air Handling Unit	EF	20.0	62.0	72.1	66,000	3148
	KE	3.0	29.7	72.1	12,000	2500
	LD	10.0	4.0	300.0	200	2292
	DG	4.0	8.0	1119.2	4,301	12321
	CE	25.0	24.0	72.1	4,712	1500
	AHU	4.0	239.9	72.1	65,000	207

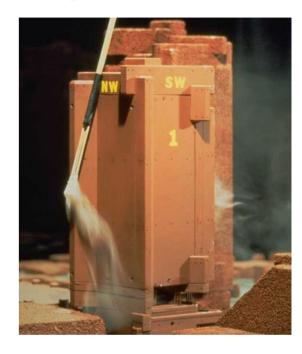
Wind Tunnel Modeling: Process Steps

- Specify model operating conditions
- Construct scale model
- Setup and visualize dispersion
- Measure concentrations
- Compare results with design criteria



Model from the SE


University lab models in wind tunnel

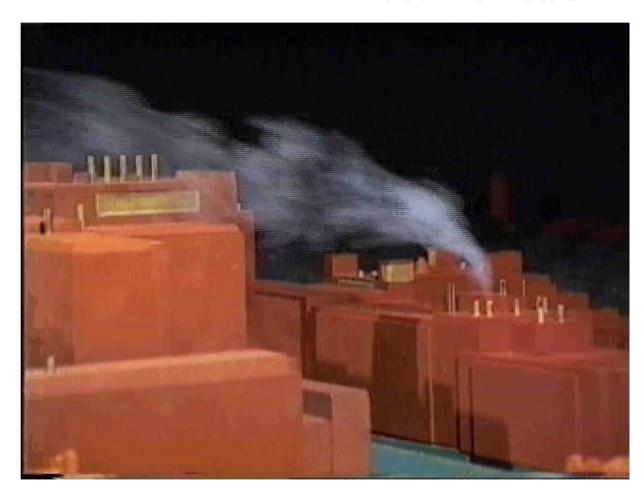


Wind Tunnel Modeling: Process Steps

- Specify model operating conditions
- Construct scale model
- Setup and visualize dispersion
- Measure concentrations
- Compare results with design criteria

Visualizing Dispersion

Wind Tunnel Modeling: Process Steps


- Specify model operating conditions
- Construct scale model
- Setup and visualize dispersion
- Measure concentrations
- Compare results with design criteria

Measuring Dispersion

Tracer from stack

Sample withdrawn from intake

Example 1:

$$H_s = 18.3 \text{ ft, } (C/m)_{max} = 285; \text{ Criteria} = 400$$

Example 2:

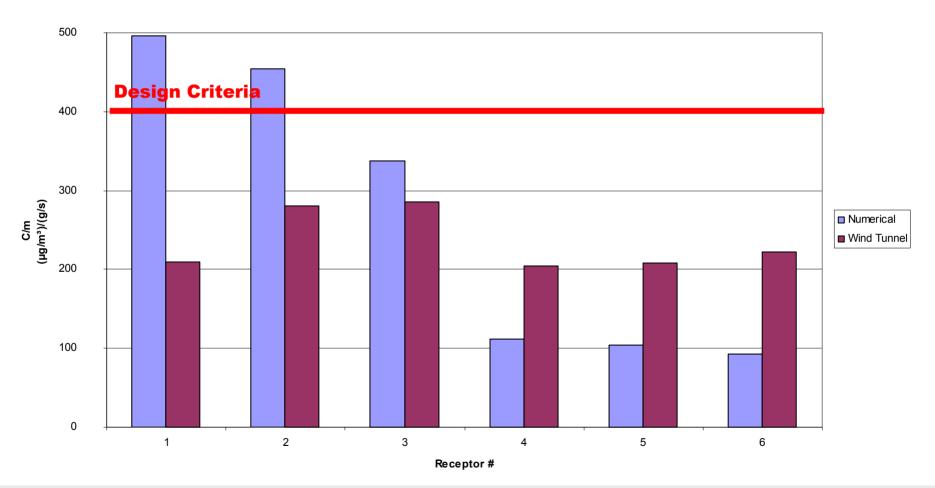
$$H_s = 18.3 \text{ ft, } (C/m)_{max} = 234; \text{ Criteria} = 400$$

Example 3:

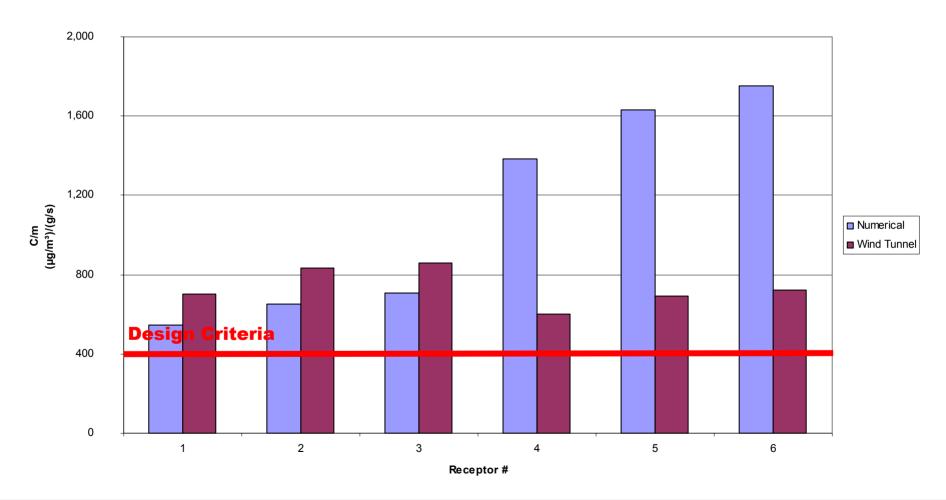
$$H_s = 18.7 \text{ ft, } (C/m)_{max} = 141; \text{ Criteria} = 400$$

Example 4:

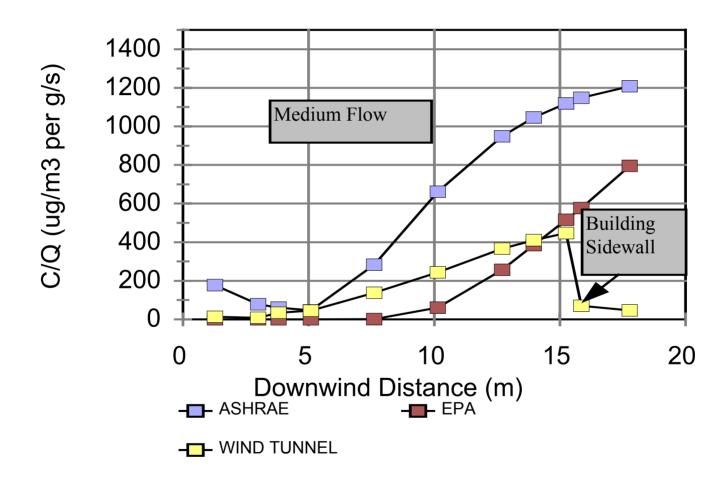
$$H_s = 3 \text{ ft, } (C/m)_{max} = 5741; \text{ Criteria} = 2293$$


Wind Tunnel Modeling: Process Steps

- Specify model operating conditions
- Construct scale model
- Setup and visualize dispersion
- Measure concentrations
- Compare results with design criteria


WT vs. Numerical - MS&E Lab Exhaust

Predicted Concentrations for MSE F-1


WT vs. Numerical - MS&E Lab Exhaust

Predicted Concentrations for MSE F-20

ASHRAE, EPA and Wind Tunnel

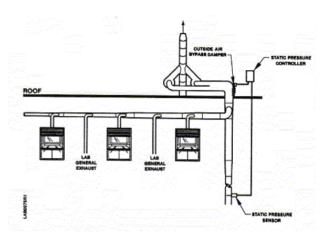
Medium Flow Stack

ASHRAE, EPA and Wind Tunnel High Flow Stack

C/Q (ug/m3 per g/s) Downwind Distance (m)

Energy Efficiency Performance Comparison

Standard Practice

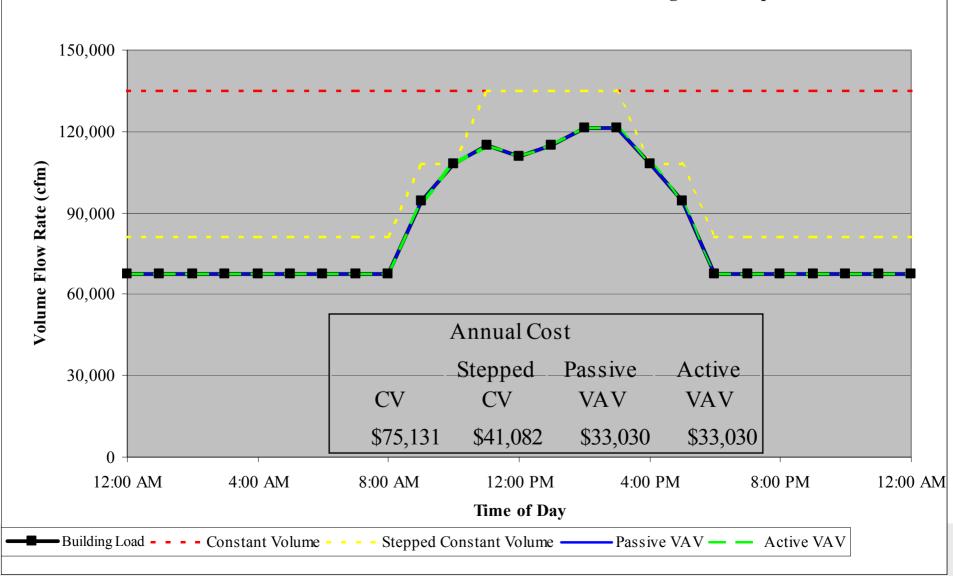

- Baseline energy consumption
- Constant volume (CV) exhaust system

Good Practice

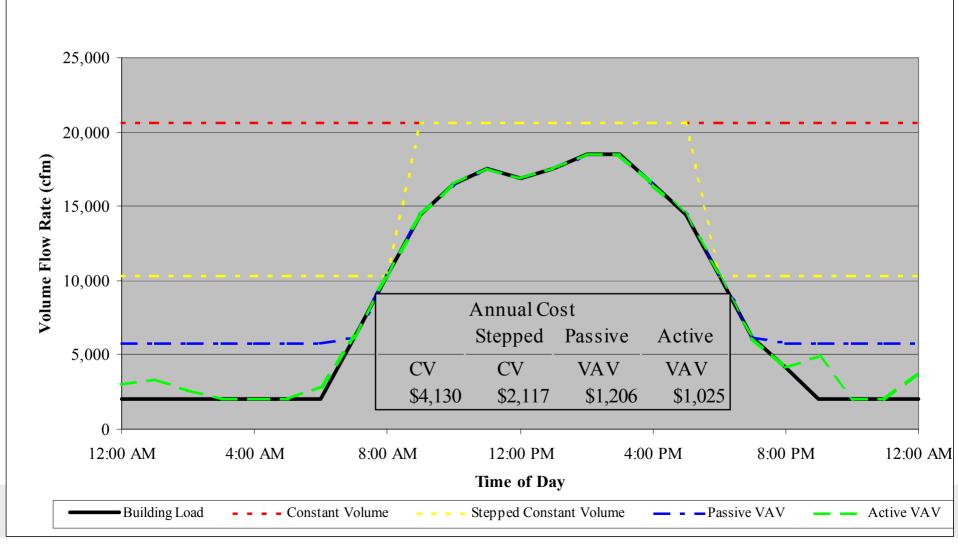
- Stepped CV fan operation
- Consider entrained air exhaust devices

Better Practice

- Variable air volume (VAV) exhaust system
- VAV with real-time wind data input



Energy Efficiency Modes of Operation


- CV constant volume to meet maximum building load requirement
- Stepped CV staged fans operating to meet hourly building load
- Passive VAV no met tower, meet building load or minimum safe flow for AQ
- Active VAV meteorological tower provides realtame wind data input, meet building load and minimum flow by hour for acceptable AQ

Minimum Volume Flow Rate Less than Minimum Building Load Requirement

Conclusion

Design Mission a Success…?

- Increased lab safety and efficiency
- Advanced exhaust dispersion design; predict concentrations
- Minimized energy waste
- Provided optimum research environment within budget

Performance bottom line...

- Designed exhaust dispersion system
 - For mission hazards
 - With priority for worker safety
 - That reduces stack-system life-cycle cost

Summary

Primary Issues

- Safety Crucial reason for removal and dispersion of hazard
- Temperature and humidity control compliments HVAC system
- Productivity of facility supports mission
- Cost to design; to Build; to Operate

Design Approach

- Standard practice
- Good practice
- Better practice

For More Information

Main Labs21 web site:

http://www.labs21century.gov

Primary Labs21 Contacts:

Otto Van Geet, P.E.

National Renewable Energy Laboratory

Phone: 303 384-7369

Fax: 303 384-7330

E-mail: otto_vangeet@nrel.gov

Geoffrey C. Bell, P.E.

Lawrence Berkeley National Laboratory

Phone: 510 486-4626

Fax: 510 486-4089

E-mail: gcbell@lbl.gov

